The Japan Times - What is microRNA? Nobel-winning discovery explained

EUR -
AED 3.825399
AFN 79.153772
ALL 98.736666
AMD 415.287403
ANG 1.877402
AOA 952.448759
ARS 1090.834985
AUD 1.659602
AWG 1.877301
AZN 1.773879
BAM 1.950918
BBD 2.103246
BDT 127.032085
BGN 1.954353
BHD 0.392577
BIF 3035.968151
BMD 1.041499
BND 1.409579
BOB 7.197814
BRL 6.181396
BSD 1.041698
BTN 90.061042
BWP 14.407873
BYN 3.408985
BYR 20413.370758
BZD 2.092473
CAD 1.496639
CDF 2963.063339
CHF 0.944473
CLF 0.037424
CLP 1032.625104
CNY 7.574405
CNH 7.583047
COP 4438.460457
CRC 523.891405
CUC 1.041499
CUP 27.59971
CVE 110.714893
CZK 25.152813
DJF 185.095046
DKK 7.460863
DOP 63.958481
DZD 140.701185
EGP 52.405391
ERN 15.622478
ETB 131.280745
FJD 2.408725
FKP 0.857765
GBP 0.845695
GEL 2.967827
GGP 0.857765
GHS 15.832891
GIP 0.857765
GMD 76.029524
GNF 9015.210639
GTQ 8.051849
GYD 217.831709
HKD 8.1117
HNL 26.568478
HRK 7.685788
HTG 136.030219
HUF 410.555067
IDR 16929.766548
ILS 3.691409
IMP 0.857765
INR 90.040306
IQD 1364.363046
IRR 43847.087052
ISK 146.070191
JEP 0.857765
JMD 163.450942
JOD 0.738837
JPY 163.128346
KES 134.870181
KGS 91.079163
KHR 4198.280235
KMF 492.212582
KPW 937.348773
KRW 1496.049575
KWD 0.321084
KYD 0.868123
KZT 542.644563
LAK 22704.667648
LBP 93318.266805
LKR 311.072991
LRD 203.040547
LSL 19.26565
LTL 3.075274
LVL 0.629992
LYD 5.129371
MAD 10.43556
MDL 19.427287
MGA 4952.325547
MKD 61.527275
MMK 3382.746528
MNT 3539.012042
MOP 8.356147
MRU 41.503932
MUR 48.377901
MVR 16.044292
MWK 1806.999849
MXN 21.375127
MYR 4.620606
MZN 66.55058
NAD 19.267918
NGN 1621.613087
NIO 38.225035
NOK 11.745775
NPR 144.098067
NZD 1.838236
OMR 0.400889
PAB 1.041698
PEN 3.872817
PGK 4.142028
PHP 60.981759
PKR 290.213572
PLN 4.222409
PYG 8239.379829
QAR 3.791571
RON 4.974506
RSD 117.103005
RUB 103.370761
RWF 1447.682926
SAR 3.906769
SBD 8.819417
SCR 15.731842
SDG 625.940544
SEK 11.464035
SGD 1.411538
SHP 0.857765
SLE 23.694484
SLL 21839.702882
SOS 595.18962
SRD 36.53548
STD 21556.91634
SVC 9.115188
SYP 13541.563586
SZL 19.270615
THB 35.280778
TJS 11.400894
TMT 3.645245
TND 3.328112
TOP 2.439295
TRY 37.129316
TTD 7.076325
TWD 34.071066
TZS 2629.783534
UAH 43.751107
UGX 3833.424736
USD 1.041499
UYU 45.585915
UZS 13534.272674
VES 57.522481
VND 26131.197567
VUV 123.648794
WST 2.917057
XAF 654.32261
XAG 0.033809
XAU 0.000378
XCD 2.814702
XDR 0.802595
XOF 657.185531
XPF 119.331742
YER 259.333095
ZAR 19.256229
ZMK 9374.731321
ZMW 29.036635
ZWL 335.362095
  • RBGPF

    0.1600

    62.36

    +0.26%

  • RYCEF

    0.1500

    7.42

    +2.02%

  • SCS

    -0.2200

    11.58

    -1.9%

  • NGG

    -1.5400

    60.05

    -2.56%

  • VOD

    -0.1700

    8.38

    -2.03%

  • CMSC

    -0.0600

    23.49

    -0.26%

  • RIO

    -0.6100

    61.12

    -1%

  • CMSD

    -0.0400

    23.96

    -0.17%

  • BCC

    -1.2000

    127.92

    -0.94%

  • BCE

    -0.2400

    23.15

    -1.04%

  • RELX

    -0.2900

    49.26

    -0.59%

  • GSK

    -0.3500

    33.43

    -1.05%

  • AZN

    0.2400

    68.2

    +0.35%

  • JRI

    -0.0400

    12.53

    -0.32%

  • BTI

    -0.1600

    36.57

    -0.44%

  • BP

    -0.3900

    31.13

    -1.25%

What is microRNA? Nobel-winning discovery explained
What is microRNA? Nobel-winning discovery explained / Photo: Jonathan NACKSTRAND - AFP

What is microRNA? Nobel-winning discovery explained

The Nobel Prize in Medicine was awarded on Monday to two US scientists for discovering microRNA, a previously unknown type of genetic switch which is hoped can pave the way for new medical breakthroughs.

Text size:

But while several treatments and tests are under development using microRNAs against cancer, heart disease, viruses and other illnesses, none have actually yet reached patients.

And the world paid little attention when the new Nobel laureates Victor Ambros and Gary Ruvkun revealed their discovery decades ago, thinking it was just "something weird about worms", Cambridge University geneticist Eric Miska told AFP.

Here is an explainer about how exactly these tiny genetic switches work inside our bodies.

- What is microRNA? -

Each cell in the human body has the same set of instructions, called DNA. Some turn into brain cells, while others become muscles.

So how do the cells know what to become? The relevant part of the DNA's instructions is pointed to via a process called gene regulation.

Ribonucleic acid (RNA) normally serves as a messenger. It delivers the instructions from the DNA to proteins, which are the building blocks of life that turn cells into brains -- or muscles.

Miska gave the example of the messenger RNA vaccines rolled out against Covid-19 during the pandemic, which insert a message with new instructions to build proteins that block viruses.

But the two new Nobel winners Ambros and Ruvkun discovered a whole new type of gene regulator that had previously been overlooked by science.

Rather than being the messenger which relays information, microRNA instead acts as a switch to turn other genes off and on.

"This was a whole new level of control that we had totally missed," said Miska, who has worked on microRNA for two decades, including with the new Nobel laureates.

"The discovery of microRNAs brought an additional level of complexity by revealing that regions that were thought to be non-coding play a role in gene regulation," French researcher Benoit Ballester told AFP.

- What did the Nobel winners do? -

Back in the 1980s, Ambros and Ruvkun had been working separately on how genes interact in one-millimetre-long roundworms called C.elegans.

When they compared their work, it led to the discovery of microRNA. Ambros revealed the finding in a 1993 paper.

"Nobody really paid much attention," Miska said, explaining that most scientists at the time thought it only applied to worms.

Then in 2000, Ruvkun published research showing that microRNA is present right across the animal kingdom, including in humans and even some viruses.

"This was not just something weird that worms do, but in fact all animals and plants are totally dependent for development and normal function on them," Miska said.

More than a thousand genes that respond to microRNAs are now believed to be in the human body.

- How could this help us? -

There are numerous new treatments and tests using microRNA that are undergoing trials but none have been made widely available.

"Though there are no very clear applications available yet in microRNAs, understanding them, knowing that they exist, understanding their counter-regulatory networks, is always the first step," the Karolinska Institute's Gunilla Karlsson Hedestam told journalists in Stockholm.

MicroRNAs are particularly promising for fighting cancer because some of these switches "act as a tumour suppressor, so they put a brake on cells dividing inappropriately," Miska said.

Others, meanwhile, induce "cells to divide, which can lead to cancer", he added.

Because many viruses use microRNAs, several antiviral drugs are at varying stages of development, including for hepatitis C.

One complicating factor has been that microRNAs can be unstable.

But scientists also hope they can be used as a test called a "biomarker", which could reveal what type of cancer a patient could be suffering from, for example.

- What next? -

It also appears probable that microRNAs could be involved in the evolution of our species, Miska said.

 

While human brains are difficult to study, Miska hoped future research will discover more.

K.Hashimoto--JT