The Japan Times - What are proteins again? Nobel-winning chemistry explained

EUR -
AED 3.825399
AFN 79.153772
ALL 98.736666
AMD 415.287403
ANG 1.877402
AOA 952.448759
ARS 1090.834985
AUD 1.659602
AWG 1.877301
AZN 1.773879
BAM 1.950918
BBD 2.103246
BDT 127.032085
BGN 1.954353
BHD 0.392577
BIF 3035.968151
BMD 1.041499
BND 1.409579
BOB 7.197814
BRL 6.181396
BSD 1.041698
BTN 90.061042
BWP 14.407873
BYN 3.408985
BYR 20413.370758
BZD 2.092473
CAD 1.496639
CDF 2963.063339
CHF 0.944473
CLF 0.037424
CLP 1032.625104
CNY 7.574405
CNH 7.583047
COP 4438.460457
CRC 523.891405
CUC 1.041499
CUP 27.59971
CVE 110.714893
CZK 25.152813
DJF 185.095046
DKK 7.460863
DOP 63.958481
DZD 140.701185
EGP 52.405391
ERN 15.622478
ETB 131.280745
FJD 2.408725
FKP 0.857765
GBP 0.845695
GEL 2.967827
GGP 0.857765
GHS 15.832891
GIP 0.857765
GMD 76.029524
GNF 9015.210639
GTQ 8.051849
GYD 217.831709
HKD 8.1117
HNL 26.568478
HRK 7.685788
HTG 136.030219
HUF 410.555067
IDR 16929.766548
ILS 3.691409
IMP 0.857765
INR 90.040306
IQD 1364.363046
IRR 43847.087052
ISK 146.070191
JEP 0.857765
JMD 163.450942
JOD 0.738837
JPY 163.128346
KES 134.870181
KGS 91.079163
KHR 4198.280235
KMF 492.212582
KPW 937.348773
KRW 1496.049575
KWD 0.321084
KYD 0.868123
KZT 542.644563
LAK 22704.667648
LBP 93318.266805
LKR 311.072991
LRD 203.040547
LSL 19.26565
LTL 3.075274
LVL 0.629992
LYD 5.129371
MAD 10.43556
MDL 19.427287
MGA 4952.325547
MKD 61.527275
MMK 3382.746528
MNT 3539.012042
MOP 8.356147
MRU 41.503932
MUR 48.377901
MVR 16.044292
MWK 1806.999849
MXN 21.375127
MYR 4.620606
MZN 66.55058
NAD 19.267918
NGN 1621.613087
NIO 38.225035
NOK 11.745775
NPR 144.098067
NZD 1.838236
OMR 0.400889
PAB 1.041698
PEN 3.872817
PGK 4.142028
PHP 60.981759
PKR 290.213572
PLN 4.222409
PYG 8239.379829
QAR 3.791571
RON 4.974506
RSD 117.103005
RUB 103.370761
RWF 1447.682926
SAR 3.906769
SBD 8.819417
SCR 15.731842
SDG 625.940544
SEK 11.464035
SGD 1.411538
SHP 0.857765
SLE 23.694484
SLL 21839.702882
SOS 595.18962
SRD 36.53548
STD 21556.91634
SVC 9.115188
SYP 13541.563586
SZL 19.270615
THB 35.280778
TJS 11.400894
TMT 3.645245
TND 3.328112
TOP 2.439295
TRY 37.129316
TTD 7.076325
TWD 34.071066
TZS 2629.783534
UAH 43.751107
UGX 3833.424736
USD 1.041499
UYU 45.585915
UZS 13534.272674
VES 57.522481
VND 26131.197567
VUV 123.648794
WST 2.917057
XAF 654.32261
XAG 0.033809
XAU 0.000378
XCD 2.814702
XDR 0.802595
XOF 657.185531
XPF 119.331742
YER 259.333095
ZAR 19.256229
ZMK 9374.731321
ZMW 29.036635
ZWL 335.362095
  • RBGPF

    0.1600

    62.36

    +0.26%

  • RYCEF

    0.1500

    7.42

    +2.02%

  • SCS

    -0.2200

    11.58

    -1.9%

  • NGG

    -1.5400

    60.05

    -2.56%

  • VOD

    -0.1700

    8.38

    -2.03%

  • CMSC

    -0.0600

    23.49

    -0.26%

  • RIO

    -0.6100

    61.12

    -1%

  • CMSD

    -0.0400

    23.96

    -0.17%

  • BCC

    -1.2000

    127.92

    -0.94%

  • BCE

    -0.2400

    23.15

    -1.04%

  • RELX

    -0.2900

    49.26

    -0.59%

  • GSK

    -0.3500

    33.43

    -1.05%

  • AZN

    0.2400

    68.2

    +0.35%

  • JRI

    -0.0400

    12.53

    -0.32%

  • BTI

    -0.1600

    36.57

    -0.44%

  • BP

    -0.3900

    31.13

    -1.25%

What are proteins again? Nobel-winning chemistry explained
What are proteins again? Nobel-winning chemistry explained / Photo: Jonathan NACKSTRAND - AFP/File

What are proteins again? Nobel-winning chemistry explained

The Nobel Prize in Chemistry was awarded on Wednesday to three scientists who have help unravel some of the enduring secrets of proteins, the building blocks of life.

Text size:

While Demis Hassabis and John Jumper of Google's DeepMind lab used artificial intelligence techniques to predict the structure of proteins, biochemist David Baker managed to design totally new ones never seen in nature.

These breakthroughs are hoped to lead towards numerous advances, from discovering new drugs to enzymes that decompose pollutants.

Here is an explainer about the science behind the Nobel win.

- What are proteins? -

Proteins are molecules that serve as "the factories of everything that happens in our body," Davide Calebiro, a protein researcher at the UK's University of Birmingham, told AFP.

DNA provides the blueprint for every cell. Proteins then use this information to do the work of turning that cell into something specific -- such as a brain cell or a muscle cell.

Proteins are made up of 20 different kinds of amino acid. The sequence that these acids start out in determines what 3D structure they will twist and fold into.

American Chemical Society president Mary Carroll compared how this works to an old-fashioned telephone cord.

"So you could stretch out that telephone cord, and then you would just have a one-dimensional structure," she told AFP.

"Then it would spring back" into the 3D shape, she added.

So if chemists wanted to master proteins, they needed to understand how the 2D sequences turned into these 3D structures.

"Nature already provides tens of thousands of different proteins, but sometimes we want them to do something they do not yet know how to do," said French biochemist Sophie Sacquin-Mora.

- What did AI do? -

The work of previous Nobel winners had demonstrated that chemists should be able to look at amino acid sequences and predict the structure they would become.

But it was not so easy. Chemists struggled for 50 years -- there was even a biannual competition called the "Protein Olympics" where many failed the prediction test.

Enter Hassabis and Jumper. They trained their artificial intelligence model AlphaFold on all the known amino acid sequences and corresponding structures.

When given an unknown sequence, AlphaFold compares it with previous ones, gradually reconstructing the puzzle in three dimensions.

After the newer generation AlphaFold2 crushed the 2020 Protein Olympics, the organisers deemed the problem solved.

The model has now predicted the structure of almost all of the 200 million proteins known on Earth.

- What about the new proteins? -

US biochemist Baker started at the opposite end of the process.

First, he designed an entirely new protein structure never seen in nature.

Then, using a computer programme called Rosetta that he had developed, he was able to work out the amino acid sequence that it started out as.

To achieve this, Rosetta trawled through all the known protein structures, searching for short protein fragments similar to the structure it wanted to build.

Rosetta then tweaked them and proposed a sequence that could end up as the structure.

- What is all this for? -

Mastering such fundamental and important little machines as proteins could have a vast number of potential uses in the future.

"It allows us to better understand how life functions, including why some diseases develop, how antibiotic resistance occurs or why some microbes can decompose plastic," the Nobel website said.

Making all-new proteins could lead to new nanomaterials, targeted drugs and vaccines, or more climate-friendly chemicals, it added.

Asked to pick a favourite protein, Baker pointed to one he "designed during the pandemic that protects against the coronavirus".

 

Calebiro emphasised how "transformative" this research would be.

"I think this is just the beginning of a completely new era."

Y.Watanabe--JT