The Japan Times - Climate change: A farm in Rotterdam

EUR -
AED 3.806062
AFN 78.367375
ALL 99.666662
AMD 414.886103
ANG 1.869937
AOA 472.514554
ARS 1090.727365
AUD 1.6614
AWG 1.867778
AZN 1.76568
BAM 1.955734
BBD 2.09493
BDT 126.525762
BGN 1.95559
BHD 0.391187
BIF 3071.197128
BMD 1.036215
BND 1.408053
BOB 7.16976
BRL 6.053612
BSD 1.037565
BTN 89.827991
BWP 14.451516
BYN 3.395486
BYR 20309.819708
BZD 2.08413
CAD 1.506813
CDF 2956.322601
CHF 0.94437
CLF 0.037078
CLP 1023.10573
CNY 7.447076
CNH 7.585656
COP 4309.555648
CRC 523.382469
CUC 1.036215
CUP 27.459705
CVE 110.261307
CZK 25.201071
DJF 184.763811
DKK 7.462864
DOP 64.097853
DZD 140.180305
EGP 52.046257
ERN 15.543229
ETB 132.907048
FJD 2.407077
FKP 0.853413
GBP 0.836177
GEL 2.96398
GGP 0.853413
GHS 15.874468
GIP 0.853413
GMD 75.129599
GNF 8968.699587
GTQ 8.025731
GYD 217.072729
HKD 8.075117
HNL 26.431115
HRK 7.6468
HTG 135.715454
HUF 407.802929
IDR 16947.560142
ILS 3.711614
IMP 0.853413
INR 89.830903
IQD 1359.154474
IRR 43624.664125
ISK 146.687036
JEP 0.853413
JMD 163.634519
JOD 0.734888
JPY 160.828389
KES 133.845517
KGS 90.617425
KHR 4174.86016
KMF 489.974798
KPW 932.593877
KRW 1510.574324
KWD 0.319652
KYD 0.864671
KZT 537.641991
LAK 22573.243893
LBP 92912.887816
LKR 309.199643
LRD 206.473084
LSL 19.366651
LTL 3.059675
LVL 0.626797
LYD 5.093829
MAD 10.414751
MDL 19.371351
MGA 4824.838389
MKD 61.527939
MMK 3365.586846
MNT 3521.059671
MOP 8.328621
MRU 41.564608
MUR 48.339835
MVR 15.96847
MWK 1799.139737
MXN 21.427637
MYR 4.616379
MZN 66.22491
NAD 19.366651
NGN 1557.431939
NIO 38.178721
NOK 11.736734
NPR 143.725186
NZD 1.838842
OMR 0.398917
PAB 1.037565
PEN 3.859771
PGK 4.224858
PHP 60.536773
PKR 289.399406
PLN 4.213559
PYG 8183.72588
QAR 3.782073
RON 4.975288
RSD 117.126077
RUB 102.196577
RWF 1472.750669
SAR 3.886799
SBD 8.759842
SCR 14.862476
SDG 622.765742
SEK 11.502156
SGD 1.406355
SHP 0.853413
SLE 23.703464
SLL 21728.916467
SOS 592.980138
SRD 36.370643
STD 21447.564418
SVC 9.078696
SYP 13472.871201
SZL 19.354352
THB 35.018935
TJS 11.34562
TMT 3.637116
TND 3.313889
TOP 2.426924
TRY 37.136661
TTD 7.037764
TWD 34.138152
TZS 2645.71138
UAH 43.270951
UGX 3819.872051
USD 1.036215
UYU 44.898496
UZS 13462.549062
VES 60.484509
VND 25988.279504
VUV 123.02156
WST 2.90226
XAF 655.935029
XAG 0.0331
XAU 0.00037
XCD 2.800424
XDR 0.793173
XOF 655.935029
XPF 119.331742
YER 257.888119
ZAR 19.350081
ZMK 9327.184796
ZMW 29.026028
ZWL 333.660901
  • BCC

    -2.5000

    126.16

    -1.98%

  • NGG

    -0.3400

    61.4

    -0.55%

  • CMSC

    -0.2100

    23.47

    -0.89%

  • GSK

    -0.0900

    35.27

    -0.26%

  • BP

    -0.5500

    31.06

    -1.77%

  • BCE

    -0.1100

    23.79

    -0.46%

  • BTI

    -0.0400

    39.64

    -0.1%

  • SCS

    -0.1600

    11.48

    -1.39%

  • AZN

    -0.4800

    70.76

    -0.68%

  • RIO

    -0.5000

    60.41

    -0.83%

  • JRI

    -0.0400

    12.53

    -0.32%

  • RBGPF

    67.2700

    67.27

    +100%

  • CMSD

    -0.3800

    23.84

    -1.59%

  • RELX

    -0.4600

    49.89

    -0.92%

  • RYCEF

    -0.0600

    7.43

    -0.81%

  • VOD

    -0.0700

    8.54

    -0.82%


Climate change: A farm in Rotterdam




A project that houses cows in a floating barn aims to demonstrate how farming can change its relationship with water and energy.

An overview of the issue of climate change and its effects on agriculture?

Climate change is no longer just a future threat, but a present reality that is already having a significant impact on agriculture worldwide. Rising temperatures, changing precipitation patterns and an increase in extreme weather events pose immense challenges for farmers and threaten

The global average temperature has increased by about 1.1 degrees Celsius since pre-industrial times. This warming is leading to changes in the growing conditions for many crops. Some plant species are sensitive to higher temperatures, which can lead to reduced yields and quality losses. For example, grain filling can be affected in

Changing precipitation patterns and water scarcity
Climate change also affects precipitation patterns, leading to droughts in some regions and flooding in others. Water scarcity is becoming an increasingly pressing problem, especially in areas of intensive agricultural use. Without sufficient irrigation, plants suffer from drought stress, which inhibits growth and reduces yields. On the other hand, heavy rainfall and flooding

Increase in extreme weather events
More frequent and intense extreme weather events such as heat waves, storms and frost periods are having a significant impact on agricultural production. Such events can destroy entire harvests, damage infrastructure and have long-term effects on soil fertility. Farmers have to adapt to unpredictable weather conditions, which makes

Spread of pests and diseases
With rising temperatures and changing climate conditions, pests and plant diseases are also spreading into new areas. Insects, fungi and viruses that were previously limited by climatic conditions can now infest larger areas. This increases the demand for pesticides and poses additional challenges for organic farming.

Impacts on animal husbandry
Livestock farming is also affected by climate change. Heat stresses farm animals and can lead to reduced growth, lower milk production and increased mortality rates. In addition, climate change affects the availability of forage crops and water, which makes animal husbandry even more difficult.

Adapting cultivation practices: Crop rotation, conservation tillage and the use of cover crops can maintain soil fertility and increase resilience to extreme weather.
Breeding climate-resistant varieties: Developing plants that can better cope with heat, drought or flooding is crucial for future food security.
Efficient irrigation systems: Technologies such as drip irrigation reduce water consumption and help to use water more efficiently.
Early warning systems: Weather forecasts and warning systems can help farmers to be better prepared for extreme weather events.
Diversification: Diversifying crops and income sources helps farmers to better cushion risks.

Policy support and global cooperation
Tackling the effects of climate change on agriculture requires policy support and international cooperation. Investments in research and development, education, and infrastructure are necessary to support farmers in their adaptation efforts. Furthermore, it is important to reduce global emissions to mitigate further climate change.

Conclusion
Climate change poses a serious threat to agriculture and global food security. However, the effects can be mitigated through proactive adaptation measures, innovation and political support. It is crucial to act now to safeguard agriculture for future generations and ensure the sustainable nutrition of the world's population.