The Japan Times - Cent ans de révolution quantique

EUR -
AED 3.806062
AFN 78.367375
ALL 99.666662
AMD 414.886103
ANG 1.869937
AOA 472.514554
ARS 1090.727365
AUD 1.6614
AWG 1.867778
AZN 1.76568
BAM 1.955734
BBD 2.09493
BDT 126.525762
BGN 1.95559
BHD 0.391187
BIF 3071.197128
BMD 1.036215
BND 1.408053
BOB 7.16976
BRL 6.053612
BSD 1.037565
BTN 89.827991
BWP 14.451516
BYN 3.395486
BYR 20309.819708
BZD 2.08413
CAD 1.506813
CDF 2956.322601
CHF 0.94437
CLF 0.037078
CLP 1023.10573
CNY 7.447076
CNH 7.585656
COP 4309.555648
CRC 523.382469
CUC 1.036215
CUP 27.459705
CVE 110.261307
CZK 25.201071
DJF 184.763811
DKK 7.462864
DOP 64.097853
DZD 140.180305
EGP 52.046257
ERN 15.543229
ETB 132.907048
FJD 2.407077
FKP 0.853413
GBP 0.836177
GEL 2.96398
GGP 0.853413
GHS 15.874468
GIP 0.853413
GMD 75.129599
GNF 8968.699587
GTQ 8.025731
GYD 217.072729
HKD 8.075117
HNL 26.431115
HRK 7.6468
HTG 135.715454
HUF 407.802929
IDR 16947.560142
ILS 3.711614
IMP 0.853413
INR 89.830903
IQD 1359.154474
IRR 43624.664125
ISK 146.687036
JEP 0.853413
JMD 163.634519
JOD 0.734888
JPY 160.828389
KES 133.845517
KGS 90.617425
KHR 4174.86016
KMF 489.974798
KPW 932.593877
KRW 1510.574324
KWD 0.319652
KYD 0.864671
KZT 537.641991
LAK 22573.243893
LBP 92912.887816
LKR 309.199643
LRD 206.473084
LSL 19.366651
LTL 3.059675
LVL 0.626797
LYD 5.093829
MAD 10.414751
MDL 19.371351
MGA 4824.838389
MKD 61.527939
MMK 3365.586846
MNT 3521.059671
MOP 8.328621
MRU 41.564608
MUR 48.339835
MVR 15.96847
MWK 1799.139737
MXN 21.427637
MYR 4.616379
MZN 66.22491
NAD 19.366651
NGN 1557.431939
NIO 38.178721
NOK 11.736734
NPR 143.725186
NZD 1.838842
OMR 0.398917
PAB 1.037565
PEN 3.859771
PGK 4.224858
PHP 60.536773
PKR 289.399406
PLN 4.213559
PYG 8183.72588
QAR 3.782073
RON 4.975288
RSD 117.126077
RUB 102.196577
RWF 1472.750669
SAR 3.886799
SBD 8.759842
SCR 14.862476
SDG 622.765742
SEK 11.502156
SGD 1.406355
SHP 0.853413
SLE 23.703464
SLL 21728.916467
SOS 592.980138
SRD 36.370643
STD 21447.564418
SVC 9.078696
SYP 13472.871201
SZL 19.354352
THB 35.018935
TJS 11.34562
TMT 3.637116
TND 3.313889
TOP 2.426924
TRY 37.136661
TTD 7.037764
TWD 34.138152
TZS 2645.71138
UAH 43.270951
UGX 3819.872051
USD 1.036215
UYU 44.898496
UZS 13462.549062
VES 60.484509
VND 25988.279504
VUV 123.02156
WST 2.90226
XAF 655.935029
XAG 0.0331
XAU 0.00037
XCD 2.800424
XDR 0.793173
XOF 655.935029
XPF 119.331742
YER 257.888119
ZAR 19.350081
ZMK 9327.184796
ZMW 29.026028
ZWL 333.660901
  • AEX

    2.9400

    921.94

    +0.32%

  • BEL20

    -2.6000

    4326.05

    -0.06%

  • PX1

    8.7400

    7950.17

    +0.11%

  • ISEQ

    -107.2600

    10205.87

    -1.04%

  • OSEBX

    -6.7000

    1515.46

    -0.44%

  • PSI20

    -10.4600

    6524.29

    -0.16%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    35.7000

    3194.76

    +1.13%

  • N150

    4.1000

    3417.73

    +0.12%

Cent ans de révolution quantique
Cent ans de révolution quantique / Photo: Ludovic MARIN - AFP/Archives

Cent ans de révolution quantique

L'année internationale des sciences et des technologies quantiques s'ouvre mercredi à l'Unesco à Paris avec pour objectif de "sensibiliser le monde à l'importance" de cette révolution centenaire. Voici quelques clés pour comprendre l'infiniment petit.

Taille du texte:

- Ondes et corpuscules -

"Les principes de la physique classique et plus généralement les concepts familiers, ceux auxquels la vie quotidienne nous confronte, ne sont pertinents que dans un monde limité. Aux portes de l'infiniment petit, ils semblent brutalement faire faillite", résume le physicien et philosophe Etienne Klein dans son ouvrage "Petit voyage dans le monde des quanta" (ed. Flammarion).

Ce constat déroutant est celui fait par des physiciens - dont Max Planck et Albert Einstein - au début du XXe siècle. A l'époque, les progrès scientifiques et technologiques permettent d'observer des phénomènes qui s'avèrent inexplicables avec les lois de la physique classique.

Ces dernières divisent le monde en deux sortes d'objets de nature a priori incompatible: les "corpuscules" - des entités matérielles localisées dans l'espace - et les ondes - des perturbations qui se propagent en transportant de l'énergie.

Or la lumière, qui a manifestement des caractéristiques ondulatoires, semble parfois se comporter comme si elle était composée de grains d'énergie: des "quanta", comme les avaient baptisés Planck. Les mêmes questions se posent pour l'électron.

Emerge alors une idée révolutionnaire: dans l'infiniment petit, les particules sont à la fois des corpuscules et des ondes.

Cette dualité leur confère des propriétés impensables dans le monde macroscopique, comme la superposition: une particule peut avoir simultanément plusieurs positions, vitesses ou niveaux d'énergie différents.

- Une physique des probabilités -

Comment décrire le comportement de telles particules, dont les propriétés n'ont pas de valeur définie, telles le fameux chat de Schrödinger, enfermé dans une boîte avec une fiole de poison et que l'on est obligé de considérer à la fois comme vivant et mort ? En utilisant les probabilités.

Il y a 100 ans, en 1925, Erwin Schrödinger et Werner Heisenberg élaborent un ensemble d'outils mathématiques complexes qui aident à prédire les résultats de mesures effectuées sur une particule ainsi que la probabilité d'obtenir l'une d'elles lors d'une expérience donnée.

"La physique quantique décrit le monde au travers de mathématiques qui se passent dans des espaces abstraits, très éloignés de notre monde. Vous êtes dans un espace de Hilbert (qui peut avoir une nombre infini de dimensions, ndlr), vous manipulez des objets mathématiques étranges", soulignait récemment Alain Aspect, prix Nobel de physique 2022.

"Mais ça fonctionne! Ca permet de décrire le fait que la matière soit stable ou comment la lumière est émise par les atomes", expliquait-il à la presse à l'occasion de la sortie de son livre "Si Einstein avait su" (ed. Odile Jacob).

Et permet de prédire une autre propriété de l'infiniment petit: l'intrication. Si deux particules séparées dans l'espace ont interagi par le passé, elles restent liées: l'état (position, niveau d'énergie...) de l'une dépend immédiatement de l'état de l'autre.

- Des applications révolutionnaires -

Si éloignée de notre monde qu'elle puisse paraître, la physique quantique fait partie de notre quotidien: le transistor - composant-clé de tous les appareils électroniques qui permet d'amplifier un signal électrique -, le laser, l'IRM, les LEDs... sont nés grâce à elle.

De nouvelles applications sont en train de voir le jour. Comme la cryptographie quantique, où l'on utilise des particules intriquées pour créer la clé de chiffrage, la rendant inviolable.

Le grand espoir est l'ordinateur quantique. Les bits de l'ordinateur classique, qui ne peuvent avoir que deux états (0 ou 1) y sont remplacés par des particules, les "qubits". Grâce à la superposition et à l'intrication, ils ont une infinité d'états possibles entre 0 et 1 et leur puissance de calcul est démultipliée.

L'ordinateur quantique pourrait traiter en des temps records des opérations extrêmement complexes, comme les prévisions météorologiques ou l'équilibrage du réseau électrique.

Mais les obstacles pour y parvenir sont énormes. Au premier rang, figure la "décohérence": en interagissant avec leur environnement, les particules perdent leurs propriétés quantiques, générant des erreurs de calcul.

Ce phénomène s'accroît avec le nombre de qubits et, si les chercheurs travaillent sur des solutions technologiques, on ne sait pas si elles existent. "Après tout, il pourrait y avoir des lois fondamentales qui font qu'à partir d'une certaine taille, ça ne marche plus", note M. Aspect.

Y.Kimura--JT